International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 4 Number 1 (2015) pp. 642-658 http://www.ijcmas.com

Original Research Article

Salt stress tolerant genes in halophilic and halotolerant bacteria: Paradigm for salt stress adaptation and osmoprotection

Priyanka Das^{1,2}, Bijay Kumar Behera¹, Dharmendra Kumar Meena^{1*}, Syed Afrin Azmi², Soumendranath Chatterjee², Kanti Meena³ and Anil Prakash Sharma¹

 ¹Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, India -700120
 ²Parasitology and Microbiology laboratory, Department of Zoology, University of Burdwan, Burdwan, West Bengal, India
 ³Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, West Bengal, India -700120
 **Corresponding author*

ABSTRACT

Keywords

Bacteria, Compatible solutes, Halotolerant, Halophilic, Osmoregulation, Salt stress tolerant genes Salinity stress is one of the major factors negatively affecting growth and productivity in living organisms including plants and bacteria resulting in significant losses worldwide. Therefore, it would be fruitful to develop salinity stress tolerant useful species and also to understand the mechanism of stress tolerance that simulate the production of bioactive osmotic compatible solute which are of great significance to cope with hostile salt stress conditions, and to have industrial and pharmaceuticals applications as well. A prerequisite for molecular studies is the identification of genes involved in the accumulation of compatible solutes. In this back drop, this review highlights various studies investigating salt stress tolerant genes from different halophilic / halotolerant bacteria, focusing on recent developments in this area.

Introduction

The damaging effects of salt accumulation in agricultural soils have influenced ancient and modern civilizations. It is estimated that 20% of the irrigated land in the world is presently affected by salinity (Yeo, 1999). Identification of beneficial traits and their use in agriculture and applied sciences based on discovery and use of novel genes has been the key element in meeting the target of food security and sustainability of the food production. With the advent of new biotechnology tools and technique, it has been possible to access genes from diverse biological systems and deploy them in target species. Use of "crystal protein" gene from the soil bacterium *Bacillus thuringiensis* in genetic engineering of crops like cotton, clearly depicts, how genes from evolutionarily distant organisms can bring new revolution in agricultural production (Jenkins *et al.*, 1991). Therefore, it is imperative to explore the elite and meticulous type of organism including microbes which are having important genes for enhancing the agricultural production.

Osmoregulation

Osmoregulation is the active regulation of the osmotic pressure of an organism's fluids to maintain the homeostasis of the organism's water content to keep the organism's fluids from becoming too diluted or too concentrated (Solomon et al., 2002). During the course of time osmoconfirmation has evolved a fundamental phenomenon exhibited by bacteria, to uphold the osmotic balance between cellular fluids and external environment (Wood, 2011). With the pace of time microorganisms have continue to develop a complex stress tolerance system to survive with the changes in their external environment. As a result of alteration to their environment, many extremophilic microorganisms have evolved unique properties of considerable biotechnological and commercial significance. Halophilic or halotolerant eubacteria are characterized by greater metabolic diversitv а much (Margesin and Schinner, 2001). As their intracellular salt concentration is low, they maintain an osmotic balance of their cytoplasm with the external medium by accumulating high concentrations of various organic osmotic solutes.

Many marine organisms are slight halophiles (with 3% w/v NaCl in sea water). Moderate halophiles optimally grow at 3-15% w/v NaCl; extreme halophiles at 25% w/v NaCl (halobacteria and halococci) and borderline extreme halophiles require at least 12% w/v salt (Kushner and Kamekura, 1988). Behera et al. (2012) identified and characterized bacteria *Staphylococcus* tested epidermidis, (P-30) and its survivability in response to varying concentration of NaCl along with Bacillus

cereus, and it was observed that they could survive up to 20% salt concentration (Behera et al., 2013a, b) (Gene Bank accession #JZ198969-JZ199140), and that was further confirmed with 16 s rRNA and whole genome transcriptome profiling is performed to unwound the real of questionable remarks. Similarly, Behera et al. (2014a) screened the bacterial isolates collected from east coast of India and suggested that most of them belong to Firmicutes and Proteobacteria group which might be of great interest from prospecting novel and candidate salt stress tolerant genes (Behera et al., 2014a). Recently, Behera et al. (2014b) has reported a bacteria Halomonas salina strain CIFRI1 that could survive up to 20% of salt concentration once depicted which again the osmoregulatory survival in face of extreme salt concentration as function of either evolutionary progression or direct nuclear level modification in bacterial genome due to salt stress tolerance genes.

Compatible solutes

Compatible solutes are osmotically active, low molecular weight substances, highly water-soluble sugars or sugar alcohols, other alcohols, amino acids, or their derivatives that make halophilic bacteria versatile in their adaptation to salinity (Ventosa et al., 1998). Compatible solutes keep away the cells from plasmolysis during adverse salt stress arbitrated environmental conditions (Kempf and Bremer, 1998). Compatible solutes exert their effect through changes in solvent structure and/or subtle changes in the dynamic properties of the protein rather than by changing the structure of the protein Compatible solutes itself. have biotechnological applications as stabilizers biomolecules *i.e.* enzymes, DNA, of membranes and whole cells, salt antagonists, stress-protective agents, increase freshness

of foods by stabilizing components and induction of osmolytes in cells can increase protein folding and thereby improve salt tolerance which could be useful in agriculture and xeriscaping (Roberts, 2005; Detkova and Boltyanskaya, 2007).

Ectoine

One of the most abundant osmolytes in nature is ectoine which are common in aerobic heterotrophic Eubacteria (Galinski, 1995). It was first discovered in the extremely halophilic phototrophic *Ectothiorhodospira* sulfobacterium halochloris (Galinski et al., 1985) but later a great variety of halophilic and halotolerant bacteria were found to produce this compound, often together with its 5-hydroxy derivative (Rothschild and Mancinelli, 2001). For instance, Halomonas elongata, an extremely halotolerant bacteria had been reported to produce ectoine and hydroxyectoines whose relative proportion depends on salinity and temperature (Margesin and Schinner, 2001). Ectoine synthesis is carried out by the products of three genes: ectABC (Ofer et al., 2012) (Fig. 1 and 2). The ectA gene codes for diaminobutyric acid acetyltransferase; ectB for the diaminobutyric codes acid aminotransferase and *ectC* codes for ectoine synthase (Roberts, 2005).

Ectoines as well as other compatible solutes have been found to improve protein folding and to protect biomolecules such as enzymes, nucleic acids, antibodies and even whole cells against heating, freeze-thawing, drying or chemical treatment (Barth *et al.*, 2000). Industrial and general application of ectoine keeps on increasing day by day: used in dermopharmacy as anti-ageing agents in skin creams, inhibits aggregation of Alzheimer's disease and recently, a clinical trial was initiated to test its efficacy in inhalations against bronchial asthma (Oren, 2010). Ectoines also find applications in the treatment of the mucous membranes of the eye. Ophthalmologic preparations containing these molecules are useful for eye treatment to decrease the dryness syndrome. Moreover, (Detkova and Boltyanskaya, 2007) reported that ectoine is used as components of shampoo, for oral care and as adjuvants for vaccines.

Trehalose

Trehalose, is a non-reducing glucose disaccharide synthesized by *otsA* and *otsB gene*, occurs in a wide variety of organisms, from bacteria and archaea to fungi, plants and invertebrates (Elbein *et al.*, 2003). Trehalose was found to constitute the shells that are secreted by various insects positioned on tree leaves in the Middle East (Richards *et al.*, 2002).

Trehalose plays a crucial role in metabolic homeostasis and abiotic stress tolerance in various organisms (Turan et al., 2012). Trehalose also presents in several common foodstuffs such as bread, wine, beer, vinegar, and honey. Trehalose has several unique properties as a stress metabolite includes high hydrophilicity, which chemical stability, nonhygroscopic glass formation and no internal hydrogen bond formation. In prokaryotes like bacteria trehalose can be used as an external carbon source as it is frequently used as a compatible solute to compete with osmotic stress (Arguelles, 2000). Moreover. trehalose is not only useful as а cryoprotectant for the freeze-drying of biomolecules, but also for long-term conservation of microorganisms, as the membrane structure is preserved in the presence of this disaccharide (Empadinhas and da Costa, 2008) The biosynthetic pathway of trehalose in Escherichia coli is represented in Figure 3.

Glycine betaine

Choline oxidase is an important enzyme which accumulates to high levels in the cytoplasm of cells to prohibit dehydration and plasmolysis in adverse hyperosmotic environments (Kempf and Bremer, 1998; Wani et al., 2013). Glycine betaine (N, N, N-trimethyl glycine) is a quaternary ammonium compound found in bacteria, haemophilic archaebacteria, marine invertebrates, plants and mammals synthesized by choline oxidase (Chen and Murata, 2008; Turan et al., 2012). First gene cluster encoding a primary ABC-type transporter for the compatible solute glycine betaine in Methanosarcina, a methanogens species has reported (Roessler, 2002). Corollary, N ϵ -acetyl- β -lysine might be synthesized from lysine by the action of two enzymes, a lysine-2, 3-aminomutase (ablA) and a lysine acetyl transferase (ablB) (Robertson, 1992) (Fig. 4). Two secondary carriers for the uptake of glycine betaine Nacoupled system which has high-affinity coded by the gene BetP and EctP which prefers ectoine to glycine betaine have been reported (Peter, 1998; Boscari et al., 2002).

Moreover, different glycine betaine identified various transporter in microorganism, has been reported (Boscari et al., 2002) for instance BetP and EctP are closely related to glycine betaine transporter OpuD from *B*. subtilis; the choline transporter and BetT the carnitine transporter CaiT from E. coli; the glycine betaine transporter BetL from Listeria monocytogenes (Sleator and Hill, 2002), and putative BetP proteins from the Mycobacterium tuberculosis (Philipp et al., 1996) and from Haemophilus influenzae (Fleischmann et al., 1995).

Na⁺ and H⁺ antiporters

 Na^+ and H^+ ions are most commonly

involved in cell functioning whose extreme high or low concentrations inhibit the physiological activities of cells (Padan et al., 2001). Different mechanisms are adopted by the cells for maintaining the homeotic balance which includes enhancement of K⁺ uptake, elimination of surplus Na⁺, reallocation of Na⁺ into other intracellular compartments (such as vacuoles), and biosynthesis of compatible solutes in the cytoplasm to maintain osmotic equilibrium. In prokaryotes, there are five classes of Na^{+}/H^{+} antiporters such as NhaA, NhaB, NhaC, NhaD, and NapA (Krulwich et al., 2009). Among all of them NhaA is the most extensively studied Na⁺/H⁺ antiporter in both the plasma lemma and tonoplast of E. coli which plays a major role in maintaining cell pH and Na⁺ homeostasis (Volkmar et al., 1998).

Production of extracellular protease

Proteases constitute one of the most important groups of industrial enzymes with versatile applications including meat tenderization, detergents, cheese-making, de-hairing, baking, waste management and silver recovery (Akcan and Uyar, 2011). Recently, there has been an increased interest in proteases targets as for developing therapeutic agents (Maryanoff, 2004). According to the market research report on world enzymes published in 2007, the world market for enzymes is expected to grow 7.6% per year to \$6 billion in 2011 (David et al., 2009). Microbial proteases account for approximately 60% of the total enzyme sales in the world (Banik and Prakash, 2004). One of the several challenges faced by industrial application of microbial proteases is optimal activity and stability in a wide range of salinity. Moreover, halophilic proteases are less suitable for saline fermentation processes, because they need at least 12.5% (w/v) NaCl for expression of high activities (Ventosa et

al., 1998). However, halotolerant proteases active at both low and high are concentrations of NaCl. Inherent capability of halotolerant bacteria to grow over an extended range of salt concentrations (3-30% NaCl, w/v) put forward them as candidate for bio-prospecting than their halophilic counterparts, as they need at least 12.5% (w/v) NaCl for expression of high activities (Ventosa et al., 1998). Moreover, marine halotolerant microorganisms show wider distribution, distinct physiological characteristics and nutrient utilization as compared to their terrestrial counterparts and obligate halophiles (Barindra et al., 2006). Most of the Gram-positive or Gramvariable, endospore forming rods with halotolerant properties has been assigned to the genus Bacillus (Yoon et al., 2003). Bacillus sp. grows in a pH range of 7.0-11.0 and produces extracellular protease and alkaline proteases (Romero, 2007). With this in view, the present investigation treats halotolerant bacteria as a potential source of enzymes (Table 1).

ABC transport cycle through ATPbinding cassette dimer

ABC transporters are transmembrane proteins with representatives in all extant phyla from prokarvotes to humans (Ponte-Sucre, 2009), that utilize the energy of adenosine triphosphate (ATP) hydrolysis to carry out certain biological processes including translocation of various substrates across membranes and non-transport-related processes such as translation of RNA and DNA repair (Davidson et al., 2008). In last decade, researcher have discovered various sub-family of ABC transporters in bacteria, for instance, Boos and Lucht (1996) reported periplasmic maltose binding protein (MBP) which constitutes maltose transport system to mediate nutrient uptake by binding to nutrients with high affinity prior to translocation. Moreover, Chen *et al.* (2001) also ascertained MBP which stimulates the ATPase activity of the membrane-associated porter through transmembrane subunits viz. MalF and MalG and two copies of the ATP binding subunit MalK.

Agricultural significance of salt stress tolerant bacterial genes in salt stress mitigation

Currently, more than 800 million hectares of land throughout the world are affected by levels of salt that could substantially reduce crop productivity (Munns and Tester, 2008). Strategies for alleviation of salt stress involve developing salt-resistant cultivars, leaching excess soluble salts from upper to lower soil depths, flushing soils that contain soil crusts at the surface, reducing salt by harvesting salt-accumulating aerial plant parts in areas with negligible irrigation water or rainfall for leaching, and amelioration of saline soils under cropping and leaching (Bacilio et al., 2004). An alternative is to alleviate salt stress by inoculating crop seeds and seedlings with plant growth promoting bacteria (PGPB). Beneficial effect of PGPB under salinity has been related to hydraulic osmolyte accumulation, conductance. sequestering toxic Na+ ions, maintaining higher conductance stomatal and photosynthetic activities (Dodd and Perez-Alfocea, 2012). Several studies have been accomplished to improve salt tolerance by introducing salt resistant bacterial gene in agriculturally important crop that has been summaries in Table 3 and agriculturally important bacteria have been enumerated in Table 2.

Sr	Source species/	Nature of source	Conducive medium/	Optimum	References
no.	strain of bacteria	bacteria /proteases	salt concentration	pH and temperature	
1.	<i>Bacillus aquimaris</i> strain VITP4	Halotolerant / Extra cellular	Basal Zobell medium/ 0–4 M	7.5 and 37 °C	Shivanand and Jayaraman, 2009
2.	<i>Virgibacillus</i> Dokdonesis Vitp14	Halotolerant/ Extra cellular	5 mM CTAB /1.5 M; NaCl, CaCl2, MgCl2, CuSO4 enhanced the activity	7.0 and 40°C.	Rajeswari <i>et al.</i> , 2012
3.	Bacillus sp.	Alkalophilic/ Alkaline protease	High alkaline conditions	11 and 60 °C.	Genckal and Tari, 2006
4.	<i>Bacillus subtilis</i> AP-MSU 6	Moderately halophilic/alkaline serine protease	Cu^{2+} , Hg^{2+} , Mn^{2+} and $Ba^2/0.5 M$	9.0 and 40 °C	Maruthiah <i>et al.</i> , 2013
5.	<i>Sinorhizobium</i> sp. strain BL3	Halophilic / ATPase,		100 mM	
6.	Pseudoalteromonas ruthenica	Moderately Halophilic/ Haloprotease CPI	3 to 15% NaCl	Alkaline pH	Sa'nchez- Porro <i>et al.</i> , 2009
7.	Bacillus clausii I- 52	Halotolerant/ Oxidant and SDS- stable alkaline protease	0.4% (w/v) NaCl	11.0 and 45 °C	Joo and Chang, 2005
8.	Bacillus sp. HS-4	Halophilic/ Extracellular Alkaline Protease	Ca2+ and Mg2+ ions	8 and 37°C	Shama and Hameed, 2011
9.	Bacillus halodurans CAS6	Haloalkaline / Extracellular Alkaline Protease	30% NaCl	9.0 and 50 °C	Annamalai <i>et al.</i> , 2013
10.	Bacillus horikoshii	Haloalkaline /alkaline protease	2% maltose, 1% sodium citrate, 0.8% NaCl, and 0.6% sodium carbonate to the culturing medium	9 and 37° C	Joo and Choi, 2012
11.	<i>Salinivibrio</i> sp. strain AF-2004	Moderately halophilic/ extracellular haloalkaline protease	0–0.5 M NaCl;	8.5 and 65 °C,	Karbalaei- Heidari <i>et</i> <i>al.</i> , 2007
12.	<i>Salinivibrio</i> sp. strain AF-2004	Moderately halophilic/	7.5 to 10% (w/v) sodium sulfate or 3% (w/v)	9.0 and 32 °C	Amoozegar et al., 2007

Table.1 Proteases secreted by bacteria

		extracellular alkaline metalloprotease	sodium acetate (4.6 U ml^{-1})		
13.	<i>Halobacillus karajensis</i> strain MA-2.	Moderately Halophilic/ extracellular protease	55% and 50% NaCl activity and gelatin	8.0-8.5 and 34 °C	Karbalaei- Heidari <i>et</i> <i>al.</i> , 2009
14.	Bacillus subtilis RSKK96	Extremely halotolerant /extracellular alkaline protease	Salts FeSO4.7H2O and MgSO4.7H2O was found to increase protease production	9.0	Akcan and Uyar, 2011
15.	Bacillus subtilis RSKK96	Extremely halotolerant/ Alpha-Amylase	FeSO4, ZnSO4 and CuSO4 inhibited bacterial growth as a result, amylase production	37°C	Ackan and Uyar, 2011
16.	Bacillus sp.	Halotolerant / serine alkaline protease	Soybean meal	9.5 and 60°C	Saurabh <i>et al.</i> , 2007
17.	Bacillus licheniformis Shahed-07	Halotolerant/therm ostable α-Amylase	0.5% tryptophan in production medium enhanced the enzyme productivity to two fold	7.5 and 70°C	Rasooli <i>et</i> <i>al.</i> , 2008
18	Bacillus amyloliquefaciens IIB-14	Haloloterant / alpha amylase	Maltose, glucose, lactose and soluble starch were supplemented as carbon sources.	7 and 70°C	Zar <i>et al.</i> , 2013

Fig.1 Biosynthetic pathway of ectoine in *Bacillus halodurans*. The genes ectB, ectA and ectC encode aminotransferase, acetyltransferase and ectoine synthase respectively

L-aspertate-semialdehyde

 \downarrow EctB aminotransferase

L-2, 4- diaminobutyrate

↓ EctA acetyltransferase

N- acetyl -L- 2, 4 - diaminobutyrate

↓ EctC ectoine synthase

Ectoine

(2 -methyl – 1,4,5,6 – tetrahyddropyrimidine – 4 – carboxylic acid)

Table.2 Agriculturally important bacteria and affected cr	rops
---	------

Sr	Name of bacteria	Isolated	Mitigated	Effects	References
no		medium	crop		
1.	Hallobacillus sp. SL3 and Bacillus halodenitrificans PU62	Saline habitats	Wheat seedlings	Enhance plant growth under saline stress through direct or indirect mechanisms	Ramadoss et al., 2013
2.	Brevibacterium epidermidis RS15, Micrococcus yunnanensis RS222, and Bacillus aryabhattai RS341	Coastal Soil	Canola plants	Significant increase in root length and dry weight plants	Siddikee <i>et al.</i> , 2010
3.	Escherichia coli.		Indicia rice cultivar Kasalath	Enhanced stress tolerance in early stages	Prodhan <i>et al.</i> , 2008
4.	Brevibacterium iodinum, Bacillus licheniformis and Zhihengliuela alba	Coastal soil	Red pepper seedlings (Capsicum annuum L.)	Enhancement of growth and salt tolerance	Siddikee et al., 2011
5.	<i>Rhizobia</i> and plant- growth-promoting rhizobacteria containing 1-aminocyclopropane- 1-carboxylate deaminase	rhizosphere soil samples and nodules of mung bean	Mung bean	Efficient for improving seedling growth and nodulation	Ahmad et al., 2011
6.	Bacillus and Bacillus- derived genera	Salt exposed rhizospheric soil	Wheat	Nitrogen fixation and improved salt stress tolerance	Upadhyay et al., 2009
7.	Mannitol 1-phosphate dehydrogenase (<i>mtl</i> D) gene producing bacteria		Transgenic potato plants	Enhanced tolerance to NaCl stress	Rahnama <i>et</i> <i>al.</i> , 2011
8.	Arthrobacter globiformis		Tomato plant	Higher tolerance to salt stress during seed germination, and subsequent growth of young seedlings and increased water stress resistance	Goel <i>et al.</i> , 2011

Sl.	Name of the Gene	Name of the bacteria	References	
No.				
1.	<i>KatE</i> , HPT and NPTII	Escherichia coli	Prodhan et al., 2008	
2.	BetS	Sinorhizobium meliloti	Boscari et al., 2002	
3.	katE	Escherichia coli K12	Islam <i>et al.</i> , 2003	
4.	ectABC	Chromohalobacter salexigens	Schubert et al., 2007	
5.	ectABC	Bacillus halodurans	Rajan <i>et al.</i> , 2008	
6.	codA	Arthrobacter globiformis strain	Fan <i>et al.</i> , 2004	
		ATCC 8010		
7.	ectABC	Chromohalobacter salexigens	Calderon et al., 2004	
8.	a-aminoisobutyric acid	Vibrio costicola	Kushner et al., 1983	
	(AIB)			
9.	OpuC and OpuB	Listeria monocytogenes	Fraser et al., 2000	
10.	ablA	Methanosarcina mazei Go 1	Pfluger et al., 2003	
11.	ectABC	Bacillus species	Kuhlmann and Bremer, 2002	
12.	otsA and otsB	Escherichia coli	Joseph <i>et al.</i> , 2010	
13.	PDH45	Eschericia coli BL21cells	Tajrishi <i>et al.</i> , 2011	
14.	otsA/otsB, mpgS/mpgP	Thermus thermophilus	Alarico et al., 2005	
15.	BetT	Pseudomonas syringae	Chen and Beattie, 2008	
16.	OtsBA and TreYZ	Escherichia coli	Padilla et al., 2004	
17.	proH, proJ and proA	Halobacillus halophilus	Saum and Muller, 2007	
18.	acdS	Hallobacillus sp. SL3 and Bacillus	Ramadoss et al., 2013	
		halodenitrificans PU62		
19.	Mpgsmt-sdmt	Halophilic Methanogen	Lai and Lai, 2011	
		Methanohalophilus portucalensis		
20.	Bacterial mannitol 1-	<i>mtl</i> D producing bacteria	Rahnama et al., 2011	
	phosphate dehydrogenase			
	(<i>mtl</i> D) gene			
21.	codA	Arthrobacter globiformis	Goel et al., 2011	

Table.3 Salt stress tolerance genes from agriculturally imperative bacteria (halotolerant/ halophilic)

Fig.2 The biosynthetic pathway of ectoine and hydroxyectoine

Fig.3 Biosynthetic pathway of trehalose in Escherichia coli

UDP-Glucose + Glucose - 6- Phosphate

OtsA

 \downarrow Trehalose -6- phosphate synthase

Trehalose -6- Phosphate

OtsB

 \downarrow Trehalose – 6 – phosphate phosphatase

Trehalose

Fig.4 The two main pathways for the synthesis of Glycine Betaine

In changing climatic scenario it is must to pace with various arbitrate biotic variables as general and salinity in particular, for sustainable agricultural production. With this in view, researchers have emphasized upon prokaryotic microorganism, halophilic and halotolerant bacteria to study the signaling pathways and other mechanism. Different biochemical and enzymological studies have revealed that most significant compatible solute, ectoine synthesized from three enzymes (EctABC), is multigenic in nature that studied in selected microbes only. Hence, more comprehensive and advanced technology, whole geneome transcriptome profiling (Fleischmann et al., 1995),

with wider studies perspective is warranted to harness the beneficial properties of osmolytes produced from a larger group of novel halophilic/ halotolerant bacteria (Behera et al., 2013a,b). However, in this context, some of recent studies showed that salt resistant bacteria could enhance the salinity tolerance in agricultural crop that later resulted in better acquired of genetic and morphological traits this might be happened due to multigenic nature of salt stress resistant bacterial genes. Although, most of the osmolytes producers are of haloterant group, the study on growth and production enzyme through these microbes has been less explored as

halophilic counterpart. compared to Therefore, it is significant to study the osmoprotection osmoadaptation and mechanism parallel to the molecular phylogeny, designing bioprocesses that improve growth conditions, and then positively influence the productivity of biomass, enzymes or metabolites (Chiara and Mario De, 2002; Behera et al., 2014a, b). From the above review, it is concluded that there is enough scope for prospecting various abiotic stress tolerant genes with special emphasis to salt stress tolerant genes from different species in future which could be used for development of transgenic lines of plants for the agriculture productivity enhancement.

References

- Ahmad, M., Zahir, Z.A., Asghar, H.N., Asghar, M. 2011. Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1aminocyclopropane-1-carboxylate deaminase. *Can. J. Microbiol.*, 57(7): 578–89.
- Akcan, N., Uyar, F. 2011. Production of extracellular alkaline protease from *Bacillus subtilis* RSKK96 with solid state fermentation. *Eurasia. J. Biosci.*, 5: 64–72.
- Alarico, S., Empadinhas, N., Simões, C., Silva, Z., Henne, A., Mingote, A., Santos, H., da Costa, M.S. 2005. Distribution of genes for synthesis of trehalose and mannosylglycerate in Thermus spp. and direct correlation of these genes with halotolerance. *Appl. Environ. Microbiol.*, 71: 2460–2466.
- Amoozegar, M.A., Fatemi, A.Z., Karbalaei–Heidari, H.R., Razavi, M.R. 2007. Production of an

extracellular alkaline metalloprotease from a newly isolated, moderately halophile, *Salinivibrio* sp. strain AF-2004. *Microbiolo. Res.*, 162(4): 369–377.

- Annamalai, N., Rajeswari, M.V., Thavasi, Vijayalakshmi, R.. S.. Balasubramanian, 2013. T. Optimization, purification and characterization of novel thermostable, haloalkaline, solvent protease from Bacillus stable halodurans CAS6 using marine shellfish wastes: A potential additive detergent for and antioxidant synthesis. Bioprocess Biosyst. Eng., 36(7): 873-883.
- Arguelles, J.C. 2000. Physiological roles of trehalose in bacteria and yeast: A comparative analysis. *Arch. Microbiol.*, 174: 217–224.
- Bacilio, M., Rodriguez, H., Moreno, M., Hernandez, J.P., Bashan, Y. 2004.
 Mitigation of salt stress in wheat seedlings by a gfp-tagged *Azospirillum lipoferum. Biol. Fertil. Soils.*, 40: 188–193.
- Banik, R.M., Prakash, M. 2004. Laundry detergent compatibility of the alkaline protease from *Bacillus cereus. Microbiol. Res.*, 159: 135– 140.
- Barindra, S., Ghosh, D., Saha, M., Mukherjee, J. 2006. Purification and characterization of a salt, solvent, detergent and bleach tolerant protease from a new gamma-*Proteobacterium* isolated from the marine environment of Sundarbans. *Process. Biochem.*, 41: 208–215.
- Barth, S., Huhn, M., Matthey, B., Klimka, A., Galinski, E.A., Engert, A. 2000. Compatible solute-supported periplasmic expression of functional recombinant proteins under stress conditions. *Appl. Environ*.

Microbiol., 66: 1572–1579.

- Behera, B.K., Das, P., Maharana, J., De,
 B.C., Pramanik, S., Meena, D.K.,
 Samarjit, N.S., Sahu, T.K., Rao,
 A.R., Jana, A.K., Sharma, A.P.
 2013b. De novo whole transcriptome analysis of P-30 (*Staphylococcus epidermidis*), Gene Bank accession (*JZ1989-JZ199140*).
- Behera, B.K., Das, P., Maharana, J., Singh, N.S., De, B.C., Jana, A.K., Meena, D.K., Sharma, A.P. 2013a. Transcriptome Analysis of marine bacterium, *Bacillus cereus* in response to elevated salt stress. In: Abstracts of 100th the Indian Science Congress, held at Kolkata during 3–7th January.
- Behera, B.K., Das, P., Patra, A., Sharma,
 A.P. 2012. Transcriptome Analysis of *Enterobacter aerogenes* KCTC 2190 in response to elevated salt stress In: Abstracts of 99th the Indian Science Congress, held at Bhubaneswar during 3–7th January.
- Behera, B.K., Priyanka, Das., Maharana, J., Meena, D.K., Sahu, T.K., Rao, A.R., Chatterjee, S., Mohanty, B.P., Sharma, A. P. 2014a. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci., doi: 10.1007/s40011-014-0440-6.
- Behera, B.K., Priyanka, Das., Maharana,
 J., Paria, P., Mandal, S., Meena,
 D.K., Sharma, A.P., Jayarajan, R.,
 Dixit, V., Verma, A., Vellarikkal, S.
 K., Scaria, V., Sivasubbu, S., Rao,
 A.R., Mohapatra, T. 2014b. Draft
 Genome Sequence of the Extremely
 Halophilic Bacterium Halomonas
 salina Strain CIFRI1, Isolated from
 the East Coast of India. Genome
 Announcement,

doi:10.1128/genomeA.01321-14

Boos, W., Lucht, J.M. 1996. Periplasmic binding protein dependent ABC transporters. In: *Escherichia coli* and Salmonella: Cellular and molecular biology, F.C. Neidhardt, R. Curtiss III, J.LIngraham, E.C.C. Lin, K.B. Low, B. Magasanik, W.S. Reznikoff, M. Riley, M. Schaechter, and H.E. Umbarger, (Eds), ASM Press, Washington, DC. Pp. 1175–1209.

- Boscari, A., Mandon, K., Dupont, L., Poggi, M.C., Rudulier, D.L. 2002. BetS major glycine Is a betaine/proline betaine transporter required for early osmotic adjustment Sinorhizobium in meliloti. J. Bacteriol., 184: (10) 2654-2663.
- Calderon, M.I, Vargas, C., Rojo, F., Iglesias-Guerra, F., Csonka, L.N., Ventosa, A., Nieto, J.J. 2004. Complex regulation of the synthesis of the compatible solute ectoine in the halophilic bacterium *Chromohalobacter salexigens* DSM 3043. *Microbiology*, 150: 3051– 3063.
- Chen. С., Beattie, G.A. 2008. Pseudomonas syringae BetT is a low-affinity choline transporter that responsible superior is for osmoprotection by choline over glycine betaine. J. Bacteriol., 190(8): 2717-2725.
- Chen, J., Sharma, S., Quiocho, F.A., Davidson, A.L. 2001. Trap ping the transition state of an ATP-bindingcassette transporter: evidence for a concerted mechanism of maltose transport. *Proc. Natl. Acad. Sci. USA.*, 98: 1525–1530.
- Chen, T.H., Murata, N. 2008. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. *Curr. Opin. Plant Biol.*, 5: 250–257.
- Chiara, S., Mario De, R. 2002. The production of biocatalysts and

biomolecules from extremophiles. *Trends Biotechnol.*, 20: 515–521.

- David, L., Vierros, M., Hamon, G., Arico, S., Monagle, C. 2009. Marine genetic resources: a review of scientific and commercial interest. *Mar. Policy.*, 33: 183–194.
- Davidson, A.L., Dassa, E., Orelle, C., Chen, J. 2008. Structure, function, and evolution of bacterial ATPbinding cassette systems. *Microbiol. Mol. Biol. Rev.*, 72 (2): 317–64.
- Detkova, E.N., Boltyanskaya, Y.V. 2007. Osmoadaptation of haloalkaliphilic bacteria: role of osmoregulators and their possible practical application. *Microbiology*, 76: 511–522.
- Dodd, I.C, Perez-Alfocea, F. 2012. Microbial alleviation of crop salinity. *J. Exptl. Bot.*, 63: 3415– 3428.
- Elbein, A.D., Pan, Y.T., Pastuszak, I., Carroll, D. 2003. New insights on trehalose: a multifunctional molecule. *Glycobiol.*, 13: 17–27.
- Empadinhas, N., da Costa, M.S., 2008.Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes. *Int. Microbiol.*, 11:151–161.
- Fan, F., Mahmoud, Ghanem., Giovanni, Gadda. 2004. Cloning, sequence analysis, and purification of choline oxidase from *Arthrobacter* globiformis: a bacterial enzyme involved in osmotic stress tolerance. *Arch. Biochem. Biophys.*, 421: 149– 158.
- Fleischmann, F., Adams, R.D., White, M.D.O., *et al.* 1995. Whole random sequencing and assembly of Haemophilus influenzae *Rd. Science.*, 269: 496–512.
- Fraser, K.R., Harvie, D., Coote, P.J., O'Byrne, C.P. 2000. Identification and characterization of an ATP

binding cassette L-carnitine transporter in *Listeria monocytogenes. App. Env. Microbiol.*, 66(11): 4696–4704.

- Galinski, E.A. 1995. Osmoadaptation in bacteria. *Adv. Microb. Physiol.*, 37: 273–328.
- Galinski, E.A., Pfeiffer, H.P., Truper, H.G. 1985. 1, 4, 5, 6-Tetrahydro- 2methyl-4-pyrimidinecarboxylic acid. A novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira. *Eur. J. Biochem.*, 149: 135–139.
- Genckal, H., Tari, C. 2006. Alkaline protease production from alkalophilic *Bacillus* sp. isolated from natural habitats. *Enz. Microbial. Technol.*, 39(4): 703– 710.
- Goel, D., Singh, A.K., Yadav, V., Babbar, S.B., Murata, N., Bansal, K.C. 2011. Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses. *J. Plant Physiol.*, 168(11): 1286– 1294.
- Islam, M.S., Azam, M.S., Sharmin, S., Sajib, A.A., Alam, M.M., Reza, M.S., Ahmed, R., Khan, H. 2013. Improved salt tolerance of jute plants expressing the *katE* gene from *Escherichia coli. Turk. J. Biol.*, 37: 206–211.
- Jenkins, J. N., W. L. Parrott, J. C. McCarty, Jr., K. A. Barton, and P. F. Umbeck. 1991. Field test of transgenic cottons containing a *Bacillus thuringiensis* gene. *Expt. Stn. Technical Bull.*, Mississippi Agricultural & Forestry Experiment Station, Mississippi State, Pp. 174– 176.
- Joo, H.S., Chang, C.S. 2005. Oxidant and SDS-stable alkaline protease from a halo-tolerant *Bacillus clausii* I-52:

enhanced production and simple purification. *J. Appl. Microbiol.*, 98(2): 491–497.

- Joo, H.S., Choi, J.W. 2012. Purification and characterization of a novel alkaline protease from *Bacillus horikoshii*. J. Microbiol. Biotechnol., 22(1): 58–68.
- Joseph, T.C., Rajan, L.A., Thampuran, N., James, R. 2010. Functional characterization of trehalose biosynthesis genes from *E. coli:* An osmolyte involved in stress tolerance. *Mol. Biotechnol.*, 46: 20– 25.
- Karbalaei-Heidari, H.R., Abed-Ali, Z., Schaller, J., Amoozegar, M.A. 2007. Purification and characterization of an extracellular haloalkaline protease produced by the moderately halophilic bacterium, *Salinivibrio* sp. strain AF-2004. *Enzyme Microbial. Technol.*, 40 (2): 266–272.
- Karbalaei-Heidari, H.R., Amoozegar, M.A., Hajighasemi, M., Ziaee, A.A., Ventosa, A. 2009 Production, optimization and purification of a novel extracellular protease from the moderately halophilic bacterium *Halobacillus karajensis. J. Ind. Microbiol. Biotechnol.*, 36: 21–27.
- Kempf, B., Bremer, E. 1998. Uptake and synthesis of compatible solutes as microbial stress responses to highosmolality environments. Arch. Microbiol., 170: 319–330.
- Krulwich, T.A., Hicks, D.B., Ito, M. 2009. Cation/proton antiporter complements of bacteria: why so large and diverse? *Mol. Microbiol.*, 74(2): 257–260.
- Kuhlmann, A.U., Bremer, E. 2002. Osmotically regulated synthesis of the compatible solute ectoine in *Bacillus pasteurii* and related *Bacillus* spp. *Appl. Env. Microbiol.*,

68: 772–783.

- Kushner, D.J., Hamaide, F., MacLeod, R.A. 1983. Development of salt resistant active transport in a moderately halophilic bacterium. *J. Bacteriol.* 153: 1163–1171.
- Kushner, D.J., Kamekura, M. 1988. Physiology of halophilic eubacteria. In *Halophilic bacteria* (ed. Rodriguez-Valera, F.), CRC Press, Boca Raton, FL, USA.
- Lai, S.J., Lai, M.C. 2011. Characterization and Regulation of the Osmolyte Betaine Synthesizing Enzymes GSMT and SDMT from Halophilic Methanogen *Methanohalophilus portucalensis. PLoS ONE.*, 6(9): e25090.
- Margesin, R., Schinner F. 2001. Potential of halotolerant and halophilic microorganisms for biotechnology. *Extremophiles.*, 5: 73–83.
- Maruthiah, T., Esakkiraj, P., Prabakaran, G., Palavesam, A., Immanuel, G. 2013. Purification and characterization of moderately halophilic alkaline serine protease from marine *Bacillus subtilis* AP-MSU 6. *Biocatal. Agri. Biotechnol.*, 2(2): 116–119.
- Maryanoff, B.E. 2004. Inhibitors of serine proteases as potential therapeutic agents: the road from thrombin to tryptase to cathepsin. J. Med. Chem., 47: 769–787.
- Munns, R., Tester M. 2008. Mechanisms of salinity tolerance. *Ann. Rev. Plant Biol.*, 59: 651–681.
- Ofer, N., Wishkautzan, M., Meijler, M., Wang, Y., Speer, A., Niederweis, M., Gura, E. 2012. Ectoine Biosynthesis in *Mycobacterium smegmati. App. Env. Microbiol.*, 78(20): 7483–7486.
- Oren, A. 2010. Industrial and environmental applications of

halophilic microorganisms. *Environ. Technol.*, 31: 825–834.

- Padan E., Venturi, M., Gerchman, Y., Dover, N. 2001. Review: Na+/H+ antiporters. *Biochim. Biophys. Acta.*, 1505: 144–157.
- Padilla, L., Morbach, S., Kramer, R., Agosin, 2004. Impact E. of Heterologous Expression of Escherichia **UDP-Glucose** coli Pyrophosphorylase on Trehalose and Glycogen Synthesis in Corvnebacterium glutamicum. App. Env. Microbiol., 70(7): 3845–3854.
- Peter, H., Weil, B., Burkovski, A., Krämer, R., Morbach, S. 1998. Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes: identification, sequencing, and characterization of the proline/ ectoine uptake system, ProP, and the ectoine/proline/glycine betaine carrier, EctP. J. Bacteriol., 180: 6005-6012.
- Pfluger, K., Baumann, S., Gottschalk, G., Lin, W., Santos, H., Muller, V. 2003. Lysine-2, 3-Aminomutase and β -Lysine Acetyltransferase Genes of Methanogenic Archaea Are Salt Induced and Are Essential for the Biosynthesis of N^{ε} -Acetyl- β -Lysine and Growth at High Salinity. *App. Env. Microbiol.*, 69 (10): 6047– 6055.
- Philipp, W.J., Poulet, S., Eiglmeier, K., Pascopella, L., Balasubramanian, V., Heym, B., Bergh, S., Bloom, B.R., Jacobs, W.R., Cole, S.T. 1996. An integral map of the genome of the bacillus Mycobacterium tuberculosis H37Rv, and comparison with Mycobacterium leprae. *Proc. Natl. Acad. Sci. USA.*, 93: 3132–3137.
- Ponte-Sucre, A. 2009. ABC Transporters in Microorganisms. Caister

Academic Press.

- Prodhan, S.H., Hossain, A., Kenji, Nagamiya., Atsushi, Komamine., Hiroko, Morishima. 2008. Improved salt tolerance and morphological variation in indica rice (*Oryza sativa* L.) transformed with a catalase gene from *E. coli. Plant Tissue Cult. Biotech.*, 18(1): 57–63.
- Rahnama, H., Vakilian, H., Fahimi, H., Ghareyazie, B. 2011. Enhanced salt stress tolerance in transgenic potato plants (Solanum tuberosum L.) expressing a bacterial mtlD gene. *Acta. Physiol. Plant.*, 33: 1521– 1532.
- Rajan, L.A., Joseph, T.C., Thampuran, N., James, R., Ashok Kumar, K., Viswanathan, C., Bansal, K.C. 2008.
 Cloning and heterologous expression of ectoine biosynthesis genes from *Bacillus halodurans* in *Escherichia coli. Biotechnol. Lett.*, 30: 1403– 1407.
- Rajeswari, D.V., Jayaraman, G., Rameshpathy, M., Sridharan, T.B. 2012. Production and characterization of extracellular protease from halotolerant bacterium *Virgibacillus* Dokdonesis Vitp14. *Res. J. Biotechnol.*, 7(2): 38–42.
- Ramadoss, D., Lakkineni, V.K., Bose, P., Ali, S., Annapurna, K. 2013. Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. *Springerplus.*, 2: 6.
- Rasooli, I., Astaneh, S.D.A., Borna H., Barchini, K.A. 2008. A thermostable α-amylase producing natural variant of *Bacillus* spp. isolated from soil in Iran. *Am. J. Agric. Biol. Sci.*, 3: 591– 596.
- Richards, A.B., Krakowka, S., Dexter, L.B., Schmid, H., Wolterbeek, A.P.M., Waalkens Berendsen, D.H.,

et al. 2002. Trehalose: A review of properties, history of use and human tolerance, and results of multiple safety studies. *Food Chem. Toxicol.*, 40: 871–898.

- Roberts, M.F. 2005. Organic compatible solutes of halotolerant and halophilic microorganisms. *Saline Syst.*, 1:1– 30.
- Robertson, D.E., Noll, D., Roberts, M.F. 1992. Free amino acid dynamics in marine methanogens-amino acids as compatible solutes. J. Biol. Chem., 267: 14893–14901.
- Roessler, M., Pflu[¨]ger, K., Flach, H., Lienard, T., Gottschalk, G., Mu[¨]ller, V. 2002. Identification of a saltinduced primary transporter for glycine betaine in the methanogen Methanosarcina mazei Go[¨]1. Appl. Environ. Microbiol. 68:2133–2139.
- Romero, E., Bautista, J., Garcı'a-Martinez, A.M., Cremendes, O., Parrado, J. 2007. Bioconversion of corn distiller's dried grains with solubles (CDDGS) to extracellular proteases and peptones. *Process Biochem.*, 42: 1492–1497.
- Rothschild, L.J., Mancinelli, R.L. 2001. Life in extreme environments. *Nature.*, 409: 1092–1101.
- Sanchez-Porro, C., Encarnacio'n, M., Pugsley, A.P., Francetic, O., Ventosa, A. 2009. The haloprotease CPI produced by the moderately halophilic bacterium *Pseudoalteromonas ruthenica* is secreted by the type II secretion pathway. *App. Env. Microbiol.*, 75(12): 4197–4201.
- Saum, S.H., Muller, V. 2007. Salinitydependent switching of osmolyte strategies in a moderately halophilic bacterium: glutamate induces proline biosynthesis in *Halobacillus halophilus. J. Bacteriol.*, 189(19):

6968–6975.

- Saurabh, S., Jasmine, I., Pritesh, G., Rajendra Kumar, S. 2007. Enhanced productivity of serine alkaline protease by *Bacillus* sp. using soybean as substrate. *Malaysian J. Microbiol.*, 3(1): 1–6.
- Schubert, T., Maskow, T., Benndorf, D., Harms, H., Breuer, U. 2007. Continuous synthesis and excretion of the compatible solute ectoine by a transgenic, nonhalophilic bacterium. *App. Env. Microbiolo.*, 73 (10): 3343–3347.
- Shama, S., Hameed, A. 2011. Extracellular alkaline protease by a newly isolated halophilic *bacillus* sp. global. *J. Biotechnol. Biochem.*, 6 (3): 142-148.
- Shivanand, P., Jayaraman, G. 2009 Production of extracellular protease from halotolerant bacterium, *Bacillus aquimaris* strain VITP4 isolated from Kumta coast. *Proc. Biochem.*, 10: 1088–1094.
- Siddikee, M.A., Chauhan, P.S., Anandham, R., Gwang-Hyun, H., Tongmin, 2010. Isolation, S. characterization, and use for plant growth promotion under salt stress, deaminase-producing of ACC halotolerant bacteria derived from coastal soil. J. Microbiol. Biotechnol., 20(11): 1577-1584.
- Siddikee, M.A., Glick, B.R., Chauhan, P.S., Yim, W.J., Sa, T. 2011. Enhancement of growth and salt tolerance of red pepper seedlings (*Capsicum annuum* L.) by regulating synthesis stress ethylene with halotolerant bacteria containing 1aminocyclopropane-1-carboxylic deaminase acid activity. Plant Physiol. Biochem., 49(4): 427-34.
- Sleator, R.D., Hill, C. 2002. Bacterial osmoadaptation: the role of

osmolytes in bacterial stress and virulence. *FEMS Microbiol. Rev.*, 26: 49–71.

- Solomon, E., Berg, L., Martin, D. 2002. Biology, 6th edn. Brooks/Cole Publishing.
- Tajrishi, M.M., Vaid, N., Tuteja, R., Tuteja, N. 2011. Overexpression of a pea DNA helicase 45 in bacteria confers salinity stress tolerance. *Plant Signal. Behav.*, 6(9): 1271– 1275.
- Turan, S., Cornish, K., Kumar, S. 2012. Salinity tolerance in plants: Breeding and genetic engineering. *AJCS.*, 6(9): 1337–1348.
- Upadhyay, S.K., Singh, D.P., Saikia. 2009. Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. *Curr. Microbiol.*, 59(5): 489–496.
- Ventosa, A., Nieto, J.J., Oren. 1998. A. Biology of moderately halophilic aerobic bacteria. *Microbiol. Mol. Biol. Rev.*, 62: 504–44.
- Volkmar, K.M., Hu, Y., Steppuhn, H. 1998. Physiological responses of plants to salinity: a review. *Can. J. Plant Sci.*, 78: 19–27.
- Wani, S.H., Singh, N.B., Haribhushan, A., Mir, J.I. 2013. Compatible solute engineering in plants for abiotic stress tolerance - role of glycine betaine. *Curr. Genomics.*, 14: 157– 165.
- Wood, J. M. 2011. Bacterial osmoregulation: a paradigm for the study of cellular homeostasis. *Ann. Rev. Microbiol.*, 65: 215–238.
- Yeo, A.R. 1999. Predicting the interaction between the effects of salinity and climate change on crop plants. *Sci. Hortic.*, 78: 159–174.
- Yoon, J.-H., Kim, I.-G., Kang, K.-H., Tae-Kwang, Oh., Park, Y.-H. 2003.

Bacillus marisflavi sp. nov., Bacillus aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. IJSEM, 59: 1297– 1303.

Zar, M.S., Ali, S., Shahid, A. A. 2013. The influence of carbon and nitrogen supplementation on alpha amylase productivity of *Bacillus amyloliquefaciens* IIB-14 using fuzzy-logic and two-factorial designs. *Afr. J. Microbiol. Res.*, 7(2): 120–129.